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Dynamics of some simple host—parasite models with more than two
genotypes in each species

By J. SEGER
Department of Biology, University of Utah, Salt Lake City, Utah 84112, U.S.A.

A two-species genetic model of host-parasite interaction is used to study the
dynamical consequences of varying the number of genotypes in each species, and the
recombination rate in the host. With two genotypes in each species, the model’s
behaviour is very simple; there is either a stable interior equilibrium, a stable cycle
or a smooth outward spiral toward the boundaries. But with three or more genotypes,
complex cycles and apparently chaotic behaviour may arise over wide ranges of
parameter values. Increasing the number of genotypes also tends to slow the rate of
gene-frequency change. Recombination in the host does not affect the stability of the
interior fixed point, but intermediate rates of recombination may give dynamic
stability to an otherwise dynamically unstable pattern of cycling. Intermediate rates
of recombination also tend to decrease the amplitudes of gene-frequency cycles in the
host, which implies that they could promote the accumulation of genetic variation
involved in complementary, antagonistic interactions with parasites.
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INTRODUCTION

The co-evolution of hosts and parasites has traditionally been thought of as a process driven
by frequency-dependent selection (see, for example, Haldane 1949; Mode 1958 ; Person 1966 ;
Clarke 1976). But there is an important difference between the kind of frequency dependence
that arises from genotype-specific host—parasite interactions, and the kind that arises from, for
example, behavioural interactions among the members of a single species. In behavioural
interactions, a genotype’s own relative frequency is often imagined to be a direct cause of its
own relative fitness, but in host-parasite interactions, the fitnesses of the host genotypes may
depend much more on the relative frequencies of the parasite genotypes than on their own
frequencies, and the fitnesses of the parasite genotypes may depend mainly on the host
genotype frequencies. Under these assumptions, a common host genotype will eventually come
to have below-average fitness because the parasite(s) best able to exploit it will have increased
in frequency; the host genotype will then decline in frequency, thereby lowering the fitness(es)
of the parasite genotype(s) that caused its own decline. The resulting ‘virtual’ frequency
dependence within each species is therefore an indirect (and time-delayed) result of the coupled
evolutionary histories of host and parasite.

Certain kinds of frequency-dependent behavioural interaction within a single species can
give rise to cyclical or otherwise unstable dynamics (see, for example, Maynard Smith & Brown
1986), but this seems to be the exception rather than the rule. By contrast, almost all models
of host—parasite co-evolution show a tendency to cycle (see, for example, Person 1966 ; Clarke
1976; Eshel & Akin 1983) because the mechanism of frequency-dependence operates with a
time delay (see, for example, Hutson & Law 1981 ; Bell 1982; Bell & Maynard Smith 1987).
A stable interior equilibrium may or may not exist depending on the details of the model (and
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sometimes on parameter values), but even where such an equilibrium does exist, gene
frequencies almost always approach it on oscillating, rather than montonically converging,
trajectories (see, for example, Jayakar 1970; Yu 1972; Lewis 19814, b; Levin 1983).

The models published so far have explored a wide range of assumptions concerning the
biologies of host and parasite (for entries to the literature see Levin (1983); Anderson & May
(1982); May & Anderson (19834, b); May (1985)) but most have been based on very simple
genetic systems consisting of one locus in each species with two alleles, or at most a small fixed
number of them. Here I suggest that the dynamics of host—parasite co-evolution are also likely
to be affected in significant ways by the structures of the underlying genetic systems. I describe
three simple models that differ only with respect to their genetic systems: (1) a model with one
locus and two alleles in host and parasite; (2) the generalization of this model to n alleles; (3)
a model with two loci and variable recombination in the host. As n increases in the one-locus
case, the interior equilibrium becomes stable over a wider range of parameter values, and the
dynamics away from the equilibrium become more sluggish but more chaotic. In the two-locus
case, recombination has no effect on the stability of the equilibrium, but the amplitudes of the
gene-frequency cycles away from equilibrium are usually smallest at recombination rates
intermediate between zero and one half, which implies that limited recombination could
promote the retention of genetic variation at loci controlling host-resistance phenotypes.

ASSUMPTIONS COMMON TO THE THREE MODELS

All the models described here share the same very simple biology. There is one host species
and one parasite species. Generations are discrete and non-overlapping, and the two species
reproduce synchronously. Host and parasite individuals encounter each other randomly, at
rates proportional to their relative frequencies. Each host genotype is vulnerable to one
complementary parasite genotype. If a host encounters its complementary parasite, its fitness
is reduced and the parasite’s fitness is increased. For the sake of simplicity, these fitness effects
are the same for each pair of complementary host and parasite genotypes.

If the frequencies of the host and parasite genotypes are H; and P, (X H,=X P =1),
then

W,=1—sF, and V,=1-—t(1-H,), (1)

where W is the fitness of host genotype ¢, V] is the fitness of parasite genotype j, s is a constant
proportional to the loss of fitness suffered by host genotype i when it is attacked by parasite
genotype ¢ (the one to which it is especially vulnerable), and ¢ is a constant proportional to the
loss of fitness suffered by parasite genotype j when it attacks a resistant host (i.e. any host
genotype other than the one that is especially susceptible to it). Thus the fitnesses within each
species are simple linear functions of the genotype frequencies in the other species. Neither
species has a direct effect on itself, and there is no explicit density dependence.

The genetic systems of both species are haploid. The parasite always has a single locus (C)
with a series of alleles C; at frequencies . In the first two models the host also has a single locus
(4) with alleles 4, at frequencies H;. In the third model the host has two loci (4 and B), each
with two alleles, and the loci undergo recombination at a rate r. In this case the host species
is assumed to mate randomly, but otherwise the host and parasite species can be thought of
either as sexual or as asexual, because each has only a single haploid locus. There is no
mutation or migration in the host population, but alleles at the C locus in the parasite mutate
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at random to one of the other available allelic states at a rate m per generation. (Alternatively,
the mutation rate can be thought of as the rate at which parasites from distant, genetically
uncorrelated populations migrate into the population of interest.)

Given these assumptions and definitions, it is easy to write down the recurrence equations
for the genotype frequencies in each species in generation 7'+ 1, as functions of s, ¢ and m (and
r if necessary), and the genotype frequencies in generation 7. If there are n genotypes in host
and parasite, then there are 2(n— 1) equations in all, because the n genotype frequencies in each
species must sum to unity. Owing to the model’s symmetry, there is always an interior fixed
point at which each of the n host and parasite genotypes is present at a frequency of 1/a. The
behaviour of the system in the neighbourhood of this fixed. point can be inferred from a
straightforward analysis of the linearized recurrence equations, and the behaviour away from
equilibrium can be easily examined, for particular sets of parameter values, by numerical
iteration of the complete system of equations. This done below for each of the three models.

TwoO ALLELES AT ONE LOCUS

The linearized recurrence equations are

=G g

where b = s/(2—s),¢ = t(1—2m)/(2—1t),d = 1 —2m, x, and y, are the current (generation —T")
deviations of the host and parasite genotype frequencies from their equilibrium values of one
half, and x] and y; are the deviations in generation T+ 1. The eigenvalues of the coefficient
matrix are the solutions of the characteristic equation

A=1)A=d)+bc=0 (3)
which are A=Y +d)+[(1+d)2—4(bc—d)]3. (4)

If m =0, then d =1, and the eigenvalues have a real part equal to unity and conjugate
imaginary parts whose size depends on the selection parameters s and ¢; the modulus (absolute
magnitude) of the eigenvalues is therefore greater than unity, so the fixed point is unstable and
a population will depart from its neighbourhood on an oscillating trajectory. As m is increased
from zero (holding s and ¢ constant), the real and imaginary parts of the eigenvalues all become
absolutely smaller, and eventually the modulus of the eigenvalues becomes equal to unity. This
critical mutation rate is

m* = st/ (2—s—t+st). (5)

For example, if s = 0.1 and ¢ = 0.3, then m* = 0.0046. Mutation rates larger than this give
eigenvalues of modulus less than unity, indicating local stability of the equilibrium. Finally, for
very large values of m (relative to the selection parameters), the imaginary parts vanish and the
eigenvalues become entirely real, indicating rapid monotonic convergence to the interior
equilibrium.

Examples of the full dynamics are shown in figure 1. If there is no mutation, then the system
spirals outward, moving ever closer to the boundaries of the H, — P, phase plane (figure 1a).
(The corner equilibria are unstable and there are no boundary equilibria, if s and ¢ are greater
than zero.) Mutation rates greater than zero but less than m* give rise to stable orbits away
from the boundaries, and these orbits are approached from any initial conditions (figure 15).
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(a) (8)

0 P, 0 P, 1

Ficure 1. Dynamics of the one-locus, two-allele model. These phase diagrams show the frequencies of allele 4, in
the host (H,, on the vertical axis), against the frequencies of allele C, in the parasite (P, on the horizontal axis).
In both of the cases illustrated here, s = 0.1 and ¢ = 0.3, and the trajectories are 1000 generations long. (a) With
no mutation (m = 0), the system spirals outward toward the boundaries. () With a moderate mutation rate
(m = 0.003) less than that required to stabilize the central fixed point (m* = 0.0046), the system rapidly
converges from any initial gene frequencies to a stably attracting orbit well away from the boundaries.

In the vicinity of the interior fixed point, the orbital period can be estimated from the angle
defined by the real axis and either of the eigenvalues, when the latter are viewed as vectors
anchored at the origin of the complex plane. (Algebraically, the eigenvalues can be expressed
in polar form, A = re’.) The orbital period 7 is then inversely related to the angle 6, as

T=2m/6. (6)

For small values of m, s and ¢, 8 is approximately equal to the imaginary part of the eigenvalues
(4), which gives roughly 6 ~ (s)%, or

T & 4m/(st)s. (7)

Even when s and ¢ are large, as in the examples shown in figure 1, this approximation is fairly

good (7 & 73 generations), and it gives roughly the correct period even for trajectories that are
well away from the interior equilibrium, as long as they are not very close to a boundary.

n ALLELES AT ONE LOCUS

If there are n possible alleles at each of the single loci in host and parasite, then the linearized
recurrence equations can be arranged in block-diagonal form as

1 —b ] —xl—w EA
¢ d Y| Y
1 —b Xy || X
: = 71, 8
¢c d Yo Ya (8)
|
B wdLed L
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where b=3s/(n—s), ¢=t(l—nm)/[n—(n—1)¢], and d=1—mnm/(n—1). When n=2,
equation (8) reduces to equation (2). The characteristic equation is of degree 2(n—1), but
owing to the block-diagonal form of the matrix, it can be factored into a product of
quadratics:

[(A—1) (A=d)+bc]" " = 0. (9)

Equation (9) is satisfied whenever any of its n—1 quadratic factors is equal to zero, so the
eigenvalues are again the roots of simple quadratic equations; each pair of eigenvalues is
repeated. n—1 times. In the more general case where the selection parameters s and ¢ are
different for each pair of complementary host and parasite genotypes, the coefficient matrix
takes the same block-diagonal form and the characteristic equation factors into a product of
n—1 quadratics. But in this case each quadratic differs from the others and must be solved
separately, so that a different pair of eigenvalues is associated with each complementary pair of
genotypes. In the yet more general case of arbitrary fitness effects for every pair of host and
parasite genotypes (involving n® pairs of selection parameters s; and ¢;), the matrix is not
reducible to block-diagonal form and the characteristic equation cannot in general be solved
in closed form. The block-diagonal form of the matrix arises from the biological assumption
that each genotype in one species sees the genotypes of the other species as falling into two
groups: the one complementary genotype, and n— 1 ‘others’; encounters with any of the latter
have the same effect on fitness.

For the symmetrical case being considered here, the critical stabilizing mutation or
migration rate is

m* = (n—1)st/{n(n*—ns—n(n—1) t+2(n—1) st]}, (10)
which for small selection parameters and moderately large n gives approximately
m* & st/n®. (11)

Thus as the number of alleles increases from few to several to many, there is a sharp reduction
in the amount of mutation or migration needed to stabilize the interior fixed point.

The period of the orbit near the fixed point increases approximately linearly with the
number of alleles. The generalized form of the approximation given as (7) in the two-allele

case is
T & 21n/ (st)*. (12)

The modulus of the eigenvalues is proportional to the rate at which the system tends to move
radially away from the fixed point. This rate of outward movement is easily shown to scale as
1/n® per generation, and therefore as 1/n per complete cycle about the fixed point. Thus in two
different senses (orbital speed and rate of outward movement), increasing the number of alleles
would appear to slow the dynamics of this model, even in cases where the rate of mutation is
not sufficient to stablize the interior fixed point.

These inferences about the quantitative effects of increasing the number of alleles were
confirmed by iterating the full recurrence equations for particular sets of parameters and initial
conditions. The numerical experiments also revealed a striking qualitative difference between
the dynamics of the two-allele case and the dynamics of all cases involving three or more alleles.
Irregular, apparently ‘chaotic’ orbits easily arise with three or more alleles, but never with
only two, under the simple biological assumptions of this model (figure 2). Complex behaviour
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Ficure 2. Dynamics of the one-locus model with n = 3. With three or more alleles, phase diagrams of the kind shown
in figure 1 give only partial representations of the state of the population. Where n = 3, trilineal diagrams can
be used to show complete but separate gene-frequency trajectories for each species; the frequency of an allele
is represented by its distance perpendicular to one of the faces of an equilateral triangle. Here the upper pair
of diagrams illustrate the first 1000 generations of a run that begins at a point near the interior fixed point (all
alleles at a frequency of }). The second pair of diagrams show the next 1000 generations of the same run, and
so on for a total of 4000 generations. To give a feeling for the speed of movement, gene frequencies are
represented as individual points plotted every generation. As in figure 1, the selection parameters are s = 0.1
and ¢ = 0.3, but the mutation rate is an order of magnitude smaller than in figure 146 (m = 0.0003). Although
the parasite population comes to spend much of its time near the boundaries, it continues to pass regularly
through the interior of its gene-frequency space, and it continues to keep the host population away from the
boundaries of its gene-frequency space. Several different orbital ‘motifs’ or modes of oscillation periodically
reappear. One of these motifs can be seen in two different orientations (qualitative phase relations among
genotypes) in the third and fourth pairs of diagrams (main axes perpendicular to the upper right-hand faces
of the diagrams, in the third pair, and perpendicular to the upper left-hand faces in the fourth). No motif ever
seems to be repeated in exactly the same way, at these parameter values, and there are continual shifts among
the different motifs, and among the three different orientations.
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can arise in two-allele models where the mode of interaction between hosts and parasites is
more complicated than the simple ‘mass action’ of the present model (see, for example,
Auslander ef al. 1978; May & Anderson 1983 4), but the present results imply that complex
behaviour should in general become more likely, the more degrees of freedom there are in the
genetic systems of host and parasite. Similar conclusions emerge from studies of multi-species
competition models (see, for example, Gilpin 1975; May & Leonard 1975).

TWO ALLELES AT EACH OF TWO LOCI

Recombination changes the frequencies of genotypes in a way that is, in some respects,
analogous to mutation. Given that mutation is one force (among others) that tends to stabilize
the interior equilibrium in simple models of host—parasite co-evolution, it seems natural to ask
whether recombination might have a similar effect. In the third and final model to be
considered here, four host genotypes are determined by two loci (4 and B), each with two
alleles (4, and 4,; B, and B,). The frequency of allele 4, is 4,, the frequency of B, is 4,, and the
frequencies of the four host genotypes are:

Genotype Frequency
4, B, H, = h h,+ D,
4, B, H,=h(1—h))—D,
4, B, H, = (1—h,)) h,— D, (13)
4, B, H,=(1—h)(1=h)+D

Here D is the coefficient of linkage disequilibrium (also called the coefficient of gametic phase
disequilibrium), which measures the degree of non-random association between alleles at
different loci. It can be defined in terms of the genotype frequencies as:

D= H,H,—H,H,. (14)

(If the numeric value ‘1’ is associated with alleles 4, and B,, and ‘0’ is associated with 4, and
B,, then D is equal to the covariance of these allelic values within genotypes.)

As in the previous models, the parasite species has a single locus. Here its four genotypes
(C, through C,, at frequencies P, through F,) are complementary to the four host genotypes, in
the order implied by the use of subscripts in the list of genotype frequencies above (13). Thus
if 7 is set equal to zero, this model reduces to the previous one-locus model with n = 4.

If 7 is greater than zero, then mating and recombination alter the genotype frequencies
according to the relations

Hy=H,—rD, H,=H,+rD, H,=H,+rD, H,=H,—rD. (15)

Thus when D is not equal to zero, recombination will reduce its magnitude in the offspring
(before selection) to a fraction (1 —r7) of its value in the parents (after selection). The largest
meaningful value of 7 is 0.5, which corresponds to free recombination (i.e. loci on different
chromosomes).

In finite populations, linkage disequilibrium is created by sampling error, even in the
absence of selection, and even between loci on different chromosomes (Hill & Robertson 1968).
But the populations being modelled here are effectively infinite in size, so any linkage
disequilibrium that arises must be created by selection.
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Owing to the interconversion of host genotypes by recombination, the linearized recurrence
equations no longer take a simple block-diagonal form:

[1 —b a —ab a —ab  [x] [*17]

¢ d % u
l—a b(a—1) —a ab Xy Xy (16)

¢ d v2 || 92

—a ab 1—a bla—1) || x, Xy

i ¢ d Jly] Ly

Herea=171/2,b=s/(4—s),c=t(1—4m)/(4—3t),d = 1—4m/3, and the x;, y,, x;, and y; are the
deviations of the host and parasite genotype frequencies from their interior equilibrium values
of 1/4. When r = 0, then a = 0, and the matrix reduces to block-diagonal form. But even when
r > 0, the characteristic equation still factors into a product of three quadratics:

[(A=1) A—d)+bc]2 [A2+A(r—d— 1)+ (1—7) (bc+d)] = O (17)

Two of the factors are identical to those for the equivalent one-locus model with n = 4; these
two are functions of s, ¢t and m only, not of 7. The third factor is a function of all four parameters,
and yields a distinct pair of eigenvalues whenever r is different from zero. Thus two identical
pairs of eigenvalues are not associated with recombination, and one distinct pair is associated
with recombination.

The stability of the interior fixed point is determined by the modulus of the largest
eigenvalue(s). It follows that recombination will not stablize an interior equilibrium that would
be unstable in the absence of recombination, because only when 7> 0 does the pair of
eigenvalues associated with recombination become different from the two pairs that are
unaffected by recombination; if the latter had modulus greater than unity for r = 0, then they
would still have modulus greater than unity for r > 0, and so the fixed point would remain
unstable. In principle, recombination could destabilize an otherwise stable equilibrium (by
giving rise to eigenvalues of modulus greater than unity), but it can be shown that for
meaningful parameter values, the modulus of the eigenvalues associated with recombination is
always less than or equal to that of the eigenvalues not associated with recombination. Thus
at least under the simple assumptions of this model, recombination has no effect on the stability
of the interior equilibrium. In this respect it appears not to play a role analogous to that of
mutation, which does affect the stability of the equilibrium.

None the less, for parameter values giving an unstable interior equilibrium (and hence
persistent cycling), recombination has very important quantitative and qualitative effects on
the actual dynamics of gene-frequency change. These are illustrated in figures 3-5 for s = 0.1,
t=0.3, and a range of values of m and r. An enormous, almost bewildering variety of
dynamical patterns is uncovered by systematically varying these four parameters. This variety
is only partly revealed by the limited number of examples illustrated here, but some interesting
and possibly general patterns do seem to emerge from these numerical experiments.

The most surprising result is that intermediate rates of recombination tend to give the
smallest, smoothest, most regular orbits, whereas very low and very high rates of recombination
tend to give more complicated, irregular orbits in which there is greater fluctuation of gene
frequencies, genotype frequencies, and linkage disequilibria.

In particular, at sufficiently high mutation rates there is a critical value of r above which the
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Figure 3. Dynamics of the two-locus model for m = 1072, Each row of panels illustrates the behaviour of the model
at a different rate of recombination. Here, and in figures 4 and 5, the selection parameters are as in figure 1.
In each row, the left-hand panel shows the genotype frequencies as functions of time, for generations 50000
to 51000 (i.e. for 1000 generations, long after the initial transients have died out). The four host genotypes are
plotted every generation, so they appear as dark lines. The parasite genotypes are plotted every fifth generation,
so they appear as a faint cloud of points that indicates the envelope within which the parasite genotype
frequencies oscillate. The central panel is a phase diagram of the kind shown in figure 1; here the (unstable)
fixed point is at genotype frequencies of . The upper panel on the right shows the coefficient of linkage
disequilibrium, D, as a function of time. Note that the scaling of its vertical axis differs for different rates of
recombination. The lower panel on the right shows the gene frequencies at the 4 and B loci in the host, again
as a function of time. All gene- and genotype-frequency axes represent the full range of possible frequencies,
from 0 to 1, and all four panels in each group represent the same 1000 generations, taken from the same
run. The first two cases (r = 0 and 7 = 0.01) are very similar at the genotype-frequency level, but they have
qualitatively different patterns of linkage disequilibria and gene-frequency oscillation. The third and fourth
cases (r = 0.05 and r = 0.15) are identical, as discussed in the text.
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Figure 4. Dynamics of the two-locus model with m = 1075. As the mutation rate is lowered, orbits tend to become
more complex, and the ‘D =0’ cycle becomes restricted to a narrower range of recombination rates.

host population suddenly switches into a very symmetrical pattern in which pairs of genotypes
cycle in unison. At one locus (4 or B, depending on initial conditions) there is no gene-
frequency change, whereas at the other there is a cycle of moderate amplitude, and there is no
linkage disequilibrium (see figure 3, for r=0.05 and r=0.15). This pattern persists
unchanged through a range of increasing values of 7, and then gradually breaks up into a more
complex pattern involving gene-frequency changes at both loci, irregular genotype-frequency

changes, and alternating linkage disequilibria.
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Ficure 5. Dynamics of the two-locus model with m = 1077. At these selection parameters (s = 0.1, { = 0.3) and
mutation rate, the ‘D = 0’ cycle does not appear at any rate of recombination, but a ‘folded’ version of the
cycle does appear in the vicinity of r = 0.05. The genetic variation of the host is protected best near r = 0.15,
where the orbit is fairly complex. A simple orbit appears under free recombination (r = 0.5; compare with
figures 3 and 4), but it involves the most extreme gene- and genotype-frequency excursions seen in any of the
cases illustrated.
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The ‘D =0’ cycle is dynamically possible at any recombination rate, including zero
(because there is never any linkage disequilibrium). But apparently it is dynamically stable
only over a limited but sometimes fairly wide range of intermediate rates of recombination,
depending on the values of the other parameters.

As the mutation rate is lowered, gene and genotype frequencies tend to undergo larger and
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larger excursions toward the boundaries. But even at the very low mutation rate of 107"
(figure 5), intermediate rates of recombination can be very effective in keeping the gene
frequencies of the host well away from fixation. (Compare r = 0.15 to r = 0.05 and r = 0.5.)

DiscussionN

The models described here are intended to focus attention on the possible dynamical
consequences of variations in the genetic systems controlling phenotypes through which hosts
and parasites interact. The specific biological assumptions embodied in the models are
extremely simple, and thus fairly unrealistic. But to the extent that antagonistic com-
plementarity is a feature of real host—parasite relations, the models seem to imply that the
dynamics of host—parasite co-evolution may depend in significant ways on elementary
parameters such as the number of available allelic states, and rates of recombination between
functionally related loci.

Like most recent genetic models of host—parasite co-evolution, the ones discussed here are
motivated by, and based loosely on, the classical gene-for-gene model first applied by Flor
(1956) to the interaction of domesticated flax and some of its fungal pathogens, and extended
since then to a number of other (mainly agricultural) plant-pathogen systems. Barrett (1983,
1985) argues that the genetics of these systems are usually much more complex than the
classical model would suggest, and that in addition, the genetics of many domesticated systems
may actually be simpler than those of their wild ancestors. The two-locus model described here
makes only a small departure from the usual gene-for-gene formalism, yet its behaviour is in
some respects qualitatively different from that of an equivalent one-locus gene-for-gene model
(i.e. the same model with r = 0).

The two-locus model could profitably be extended in several directions. For example, the
parasite could be given a similar two-locus genetic system, and the number of possible alleles
at each locus could be made greater than two. It would also be of interest to know whether
the dynamically stabilizing effects of intermediate recombination rates are seen in finite-
population versions of these models, and in versions with explicit density dependence as well
as the pure frequency dependence modelled here.

Many realistic complications could be added to the biologies of host and parasite. For
example, host and parasite genotypes are likely to show varying levels of cross-reactivity, rather
than the all-or-nothing pattern of interaction assumed here. In addition, no real host—parasite
system is an isolated two-species island unto itself, as is also assumed here; parasites may share
hosts, and hosts may share parasites. Hamilton (1986) has described a four-species model of
population dynamics (two hosts, two parasites), but so far there seems to be almost no work
on multi-species host—parasite models with explicit genetics in each of the species.

The random-encounter, mass-action assumption is far from realistic for most kinds of
host—parasite systems. May & Anderson (1983 6) modified some simple single-species models
first studied by Hamilton (1980, 1982), by deriving the fitness functions directly from standard
epidemiological models. Their results are generally similar to those obtained using Hamilton’s
simpler, less realistic fitness functions, but it is possible that the dynamics of fully co-
evolutionary two-species (or multi-species) models will turn out to be very sensitive to the
detailed mechanisms through which hosts encounter and interact with particular parasite
genotypes.
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Charlesworth (1976), Hutson & Law (1981), Sasaki & Iwasa (1987), and Bell & Maynard
Smith (1987) have shown that intermediate rates of recombination can evolve under regimes
of fluctuating selection. These results seem to imply that intermediate rates would evolve in a
generalized version of the present two-locus model, because selection fluctuates with periods
and intensities that seem at least superficially consistent with the regimes that favoured
intermediate rates of recombination in the earlier studies. But the patterns of selection that arise
in the present model could differ in subtle but critical ways from ones that would actually
favour intermediate values of 7. Or it could turn out that although the evolutionarily stable
values of r were greater than zero and less than one half, they were nonetheless very far from
those that would be most effective in retaining genetic variation.

The models recently described by Bell & Maynard Smith (1987) are fully co-evolutionary.
Both host and parasite have two haploid fitness loci and one locus controlling the rate of
recombination. With respect to the fitness loci the models are similar in spirit to the two-locus
model described here, except that the two patterns of interaction studied by Bell & Maynard
Smith are somewhat more complicated than the simple all-or-nothing scheme of com-
plementarity used in the models described here. Under one of these patterns of interaction
(‘quantitative’), Bell & Maynard Smith find that free recombination is favoured in the
parasite, whereas zero recombination is favoured in the host. Under the other pattern (‘gene-
for-gene), the free-recombination allele increases to similar low frequencies in both the host and
the parasite, implying that the evolutionary equilibrium would probably be fixation for alleles
causing low rates of recombination. These results clearly demonstrate that different patterns of
complementarity may have very different effects on the evolution of rates of recombination.

In summary, the models described here suggest that the dynamics of host—parasite co-
evolution may become much more complex, but slower-moving, as the number of interacting
genotypes in each species is increased. These effects of increased genotype number have
straightforward intuitive explanations. More complicated modes of genotype-frequency
change are made possible by an increased number of degrees of freedom in the genetic systems
of host and parasite, and the variance of fitness among genotypes tends to be reduced, as the
number of genotypes in each species is increased. Recombination in the host does not affect the
stability of the interior fixed point, under the simple biological assumptions of these models, but
intermediate rates of recombination may give rise to orbits that are simpler, smaller and more
symmetrical than those produced by lower or higher rates of recombination, for ranges of the
other parameters that lead to persistent cycling. There seems to be no intuitively obvious reason
why intermediate rates of recombination should tend to simplify the dynamics away from
equilibrium.

I thank W. D. Hamilton, F.R.S., and R. M. May, F.R.S., for helpful advice and discussion.
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Discussion

J. Antonovics (Department of Botany, Duke University, U.S.A.). From Dr Seger’s simulations
showing less extreme dynamics at intermediate recombination rates, would he predict that
intermediate recombination rates would be favoured if a modifier gene affecting recombination
rate were introduced into the population?

J. SEGER. Yes, I think it is very likely that an intermediate rate of recombination would evolve
in the host, if a full range of modifier alleles was available. This seems to be implied by the
existing work on recombination modification in fluctuating environments, and especially by
the very recent results of Bell & Maynard Smith (1987), who have studied a fully co-
evolutionary three-locus model that is similar in many ways to this one. But it seems to be an
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open question whether a recombination modifier can be said to have increased in frequency
because of its effect on the dynamics of gene and genotype frequency change. At least to some
extent, the cause-and-effect relation clearly works the other way around, because an externally
imposed fluctuating environment can favour intermediate rates of recombination. In
host—parasite models, the pattern of environmental fluctuation arises from the interaction
between the two species and therefore depends, in part, on the recombination rate, which
evolves in response to the pattern of environmental fluctuation. This feedback between the
recombination rate and the genotype-frequency fluctuations that favour its modification could
hardly fail to have an effect on the evolutionary equilibrium, but I have no idea how strong
the effect will turn out to be.

Sasaki & Iwasa (1987) have suggested that the evolutionarily stable recombination rate in
a fluctuating environment will usually be the one that maximizes the population’s long-term
geometric mean fitness. The geometric mean fitness of the host is indeed maximized at
intermediate rates of recombination, and this makes sense to the extent that intermediate
recombination rates give rise to relatively restrained dynamics. But the fitness differences
caused by varying the 7 of the host (and thus the dynamics of the system) are small compared
with the fitness differences caused by the loss or addition of alleles. For example, the geometric
mean fitriess of the host varies by about 0.59%, (as a function of r) for the parameter values
shown in figure 4, with a global maximum near r = 0.05 and two or more local maxima at
much higher values of 7. But if an allele is lost from either the 4 or the B locus, so that the host
has only two distinct genotypes, then its geometric mean fitness drops by more than 2.5 %,. This
suggests that, in a finite population, the recombination rate might be more strongly selected for
its effect on the maintenance of genic variation than for its effect on the dynamics as such, given
any particular level of variation.
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